منابع مشابه
Discretization of Volterra Integral Equations
We show that various (discrete) methods for the approximate solution of Volterra (and Abel) integral equations of the first kind correspond to some discrete version of the method of (recursive) collocation in the space of (continuous) piecewise polynomials. In a collocation method no distinction has to be made between equations with regular or weakly singular kernels; the regularity or nonregul...
متن کاملApproximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method
In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...
متن کاملWeakly Singular Volterra and Fredholm-volterra Integral Equations
Some existence and uniqueness theorems are established for weakly singular Volterra and Fredholm-Volterra integral equations in C[a, b]. Our method is based on fixed point theorems which are applied to the iterated operator and we apply the fiber Picard operator theorem to establish differentiability with respect to parameter. This method can be applied only for linear equations because otherwi...
متن کاملQualitative Properties of Nonlinear Volterra Integral Equations
In this article, the contraction mapping principle and Liapunov’s method are used to study qualitative properties of nonlinear Volterra equations of the form x(t) = a(t)− ∫ t 0 C(t, s)g(s, x(s)) ds, t ≥ 0. In particular, the existence of bounded solutions and solutions with various L properties are studied under suitable conditions on the functions involved with this equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1982
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1982.101800